Computing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method

The partial Schur factorization can be used to represent several eigenpairs of a matrix in a numerically robust way. Different adaptions of the Arnoldi method are often used to compute partial Schur factorizations. We propose here a technique to compute a partial Schur factorization of a nonlinear eigenvalue problem (NEP). The technique is inspired by the algorithm in [8], now called the infini...

متن کامل

An Arnoldi Method for Nonlinear Eigenvalue Problems

For the nonlinear eigenvalue problem T (λ)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem gover...

متن کامل

A rank-exploiting infinite Arnoldi algorithm for nonlinear eigenvalue problems

We consider the nonlinear eigenvalue problem: M(λ)x = 0, where M(λ) is a large parameter-dependent matrix. In several applications, M(λ) has a structure where the higher-order terms of its Taylor expansion have a particular low-rank structure. We propose a new Arnoldi based algorithm that can exploit this structure. More precisely, the proposed algorithm is equivalent to Arnoldi’s method applie...

متن کامل

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

where T (λ) ∈ R is a family of symmetric matrices depending on a parameter λ ∈ J , and J ⊂ R is an open interval which may be unbounded. As in the linear case T (λ) = λI −A a parameter λ is called an eigenvalue of T (·) if problem (1) has a nontrivial solution x 6= 0 which is called a corresponding eigenvector. We assume that the matrices T (λ) are large and sparse. For sparse linear eigenvalue...

متن کامل

The Waveguide Eigenvalue Problem and the Tensor Infinite Arnoldi Method

We present a new computational approach for a class of large-scale nonlinear eigenvalue problems (NEPs) that are nonlinear in the eigenvalue. The contribution of this paper is two-fold. We derive a new iterative algorithm for NEPs, the tensor infinite Arnoldi method (TIAR), which is applicable to a general class of NEPs, and we show how to specialize the algorithm to a specific NEP: the wavegui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2014

ISSN: 0895-4798,1095-7162

DOI: 10.1137/110858148